УДК 542.97+547.313+547.56+665.9

ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР НА ОСНОВЕ ФОСФИНСОДЕРЖАЩЕГО ОРГАНИЧЕСКОГО ПОЛИМЕРА ДЛЯ ГИДРОФОРМИЛИРОВАНИЯ ОКТЕНА-1

© 2021 г. Д. Н. Горбунов^{1,} *, М. В. Ненашева¹, Р. П. Мацукевич¹, М. В. Теренина¹, Ю. С. Кардашева¹, Э. А. Караханов¹

¹ Московский государственный университет им. М.В. Ломоносова, химический факультет, Ленинские горы, 1/3, Москва, 119992 Россия *E-mail: suskab_91@mail.ru Поступила в редакцию 19.11.2020 г. После доработки 04.12.2020 г. Принята к публикации 19.07.2021 г.

Синтезирован фосфинсодержащий пористый полимер (TPDB) и родиевый катализатор на его основе. На основании данных просвечивающей электронной микроскопии, спектроскопии ядерного магнитного резонанса, инфракрасной спектроскопии и рентгеновской фотоэлектронной спектроскопии сделано предположение о том, что активной фазой катализатора выступают как комплексы Rh(I), так и наночастицы Rh(0), стабилизированные в порах полимера. Размер наночастиц соответствует размеру пор полимера и составляет 2–6 нм. Полученный катализатор испытан в модельной реакции гидроформилирования октена-1 при давлении 2.0 МПа (CO : $H_2 = 1 : 1$) в интервале температур 60–120°C; показано, что он может быть использован многократно, и его активность сохраняется на постоянном уровне, начиная с третьего цикла использования (выход альдегидов около 30% за 5 ч, h/uзo 2.5).

Ключевые слова: гидроформилирование, пористый органический полимер, наночастицы родия, комплексы родия, катализ, гетерогенный катализатор

DOI: 10.1134/S2414215821010044

Гидроформилирование непредельных соединений, представляющее собой каталитическое взаимодействие олефинов с синтез-газом при повышенном давлении и температуре, является одной из важнейших реакций органического синтеза, направленных на получение альдегидов различного строения [1, 2]. В промышленном гидроформилировании олефинов используют гомогенные кобальтовые ($T = 140 - 200^{\circ}$ С, p = 5.0 - 30.0 МПа) и родиевые (*T* = 85–130°С, *p* = 1.5–5.0 МПа) катализаторы в виде гидридокарбонилов либо модифицированные донорными лигандами, чаще всего алкил/арилфосфинами и фосфитами. Однако даже при достижении необходимых показателей конверсии субстрата и селективности реакции остается открытым вопрос повышения эффективности стадии отделения и рециркуляции катализатора [3, 4]. Классические экстракционные и листилляционные способы технически сложны. и зачастую их осуществление приводит к дезактивации и потерям дорогостоящего катализатора по причине разрушения металлокомплекса, окисления или деструкции лиганда: как следствие, требуется проведение стадии регенерации [5-7].

Альтернативным способом стал разработанный в 1984 г. в Германии процесс гидроформилирования пропилена в условиях двухфазного катализа с использованием водорастворимого катализатора [8, 9]. Данный подход оказался применим лишь для гидроформилирования низших олефинов, поскольку олефины с длиной цепи $>C_6$ характеризуются низкой растворимостью в воде, что вызывает значительное снижение скорости реакции [10–13].

Проблема отделения катализатора от продуктов реакции вне зависимости от типа перерабатываемого субстрата может быть решена при использовании гетерогенных катализаторов. К настоящему времени накоплен значительный опыт в данной области. Многочисленные подходы к осуществлению закрепления активного металла на поверхности, в порах или в структуре носителей систематизированы в обзорах [14–17]. Основным недостатком гетерогенных катализаторов жидкофазного гидроформилирования является вымывание частиц активного металла в реакционную среду, что приводит к их быстрой дезактивации и невозможности использования в непрерывном режиме. Процессы вымывания обусловлены рядом причин, среди которых следует выделить формирование под действием синтезгаза и повышенных температур гидридокарбонилов металлов (HCo(CO)₄ либо HRh(CO)₄), растворимых в органических средах [18, 19].

Один из наиболее перспективных подходов к созданию гетерогенных катализаторов гидроформилирования заключается в получении родиевых катализаторов на основе пористых органических полимеров. Носители такого типа сочетают высокие пористость и плотность лигандных фрагментов, устойчивость к воздействию органических сред и повышенных температур. Возможность создания в структуре материалов специфических координационных центров открывает перспективы их применения для селективного синтеза линейных альдегидов или ассиметрического синтеза. Сведения об использовании катализаторов на основе пористых органических полимеров в гидроформилировании систематизированы в обзоре [20]. Основной способ синтеза полимеров такого типа состоит в получении мономеров – арилфосфиновых или фосфитных производных, содержащих винильные фрагменты – и их дальнейшей полимеризации. При обработке получаемых пористых материалов родиевыми прекурсорами были получены образцы гетерогенных катализаторов, которые проявили высокую стабильность, активность, хемо- и региоселективность в реакции гидроформилирования ряда модельных субстратов [21].

Цель работы — получение гетерогенного родиевого катализатора на основе фосфорсодержащего пористого органического полимера (TPDB) и изучение его активности в реакции жидкофазного гидроформилирования модельного субстрата — октена-1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использованы: FeCl₃ (Sigma-Aldrich, 99.9%), α, α' -дибром-*n*-ксилол (Sigma-Aldrich, 98%), трифенилфосфин (Sigma-Aldrich, 99%), фенилсилан (Sigma-Aldrich, 96.5%), октен-1 (Sigma-Aldrich). В качестве растворителей использовали 1,2-дихлорэтан (Acros Organics, 99.8%), метанол (Acros Organics, 99%), толуол (ООО "Компонент-Реактив", х. ч.). Очистку растворителей проводили по стандартным методикам. Синтез ацетилацетонатодикарбонила родия Rh(acac)(CO)₂ выполнен по методике, описанной в [22].

Анализ исходных веществ, полимерных носителей, катализаторов на их основе и продуктов реакции проводили методами газо-жидкостной хроматографии, спектрофотометрии, ИК-спектроскопии, твердотельной ЯМР-спектроскопии, рентгенофотоэлектронной спектроскопии (РФЭС), атомно-абсорбционной спектроскопии, просвечивающей электронной микроскопии (ПЭМ), низкотемпературной адсорбции-десорбции азота.

Анализ методом газо-жидкостной хроматографии проводили на хроматографе "Хромос" с пламенно-ионизационным детектором, капиллярной колонкой 30 м, заполненной фазой DB-5, при повышении температуры от 60 до 235°C со скоростью нагрева 10°С/мин, газ-носитель – гелий. Спектрофотометрическое определение содержания фосфора и кремния проведено на двухлучевом спектрофотометре Agilent Cary-100. Анализ носителей и катализаторов методом ИК-спектроскопии с Фурье-преобразованием был выполнен на приборе Nicolet IR2000 (Thermo Scientific). Анализ методом твердотельной спектроскопии ЯМР на ядрах ¹Н. ³¹Р и ¹³С проводили на спектрометре Bruker Avance II 400WB 400 WB при частотах 400.13 и 162.0 МГц соответственно. Исследования методом рентгеновской фотоэлектронной спектроскопии (РФЭС) проводили с помощью электронного спектрометра LAS-3000 (RIBER), оснащенного фотоэлектронным анализатором с задерживающим потенциалом ОРХ-150. Количественное определение родия в образцах было выполнено методом пламенной атомно-абсорбционной спектроскопии на спектрометре AAnalyst 400. Анализ материалов методом просвечивающей электронной микроскопии (ПЭМ) выполняли с помощью просвечивающего электронного микроскопа Leo 912 AB OMEGA (увеличение ×80–500000, разрешение изображения: 0.20 -0.34 нм), потенциал электронного пучка 100 эВ.

Характеристики пористости были определены на анализаторе Gemini VII 2390 (V1.02t) (Micromeritics) по стандартной методике. Перед анализом образцы дегазировали в течение 12 ч при температуре 120°С и давлении 3×10⁻⁴ МПа. Изотермы адсорбции и десорбции регистрировали при температуре 77 К. Расчет пористости структур проводили с использованием стандартного программного обеспечения. Удельная площадь поверхности рассчитана по модели Брунауэр-Эммета-Тэллера при относительном парциальном давлении $p/p_0 = 0.2$. Общий объем пор и распределение пор по размерам рассчитаны по модели Баррета-Джойнера-Халенда при относительном парциальном давлении $p/p_0 = 0.95$.

Синтез фосфинсодержащего пористого полимера ТРDВ проводили путем алкилирования трифенилфосфина α,α'-дибром-*n*-ксилолом с последующим восстановлением фенилсиланом (схема 1):

Схема 1. Синтез фосфинсодержащего носителя (TPDB).

Первую стадию - получение полимера ТР(O)DB – осуществляли по методике, аналогичной приведенной в [23]. Во избежание кватернизации трифенилфосфина, осложняющей процесс при следовании оригинальной методике, был изменен порядок смешения реагентов. При проведении синтеза придерживались следующего порядка действий: в трехгорлой колбе емкостью 250 мл, снабженной магнитной мешалкой и обратным холодильником с хлоркальциевой трубкой, растворяли 2.66 г α, α' -дибром-*n*-ксилола в 30 мл 1,2-дихлорэтана, после чего к полученному раствору добавляли 6.48 г безводного FeCl₃. Затем содержимое колбы охлаждали на ледяной бане, после чего добавляли раствор 2.64 г трифенилфосфина в 20 мл 1,2-дихлорэтана. Через 10 мин колбу помещали в баню с силиконовым маслом, нагревали до 45°C и перемешивали 5 ч, после чего температуру увеличивали до 80°С и вели реакцию в течение 48 ч. Все процедуры проводили в токе аргона. Продукт промывали 1,2-дихлорэтаном и метанолом и высушивали в вакууме.

Для получения фосфинсодержащего носителя TPDB полимер TP(O)DB восстанавливали фенилсиланом, для чего в заполненную аргоном круглодонную колбу объемом 100 мл, снабженную магнитной мешалкой, помещали 1.5 г TP(O)DB и добавляли 4.5 мл фенилсилана и 10 мл толуола. Колбу плотно закупоривали пробкой с тефлоновой прокладкой и помещали в баню с силиконовым маслом. Реакцию вели при температуре 98°С при интенсивном перемешивании в течение 48 ч. Полученный осадок сушили 40 мин на роторном испарителе при 60°С. Масса продукта составила 2.5 г.

Синтез катализатора (Rh/TPDB) проводили в инертной атмосфере. В предварительно запол-

2021

Рис. 1. Изотермы низкотемпературной адсорбциидесорбции азота фосфорсодержащего полимера ТР(O)DB.

ненную аргоном колбу объемом 25 мл, снабженную магнитной мешалкой, помещали 300 мг полимерного носителя, 18 мг Rh(acac)(CO)₂ и приливали 4 мл толуола. Колбу плотно закрывали стеклянной пробкой. Смесь перемешивали 5 ч, после чего осадок отделяли с помощью центрифугирования, промывали толуолом (3 раза по 5 мл), затем сушили в вакууме в течение 1 ч. Был получен светло-бурый порошок (Rh/TPDB) массой 243 мг.

Реакцию гидроформилирования в присутствии гетерогенного катализатора Rh/TPDB проводили в стальном автоклаве объемом 25 мл, снабженном устройством для термостатирования и магнитной мешалкой. В продутый аргоном автоклав помещали рассчитанное количество катализатора, октена-1 и толуола. Реакцию вели при постоянном перемешивании при заданных давлении (2.0 МПа (CO : $H_2 = 1 : 1$)) и температуре (60-120°С) в течение времени, определенного каждым конкретным экспериментом, затем автоклав охлаждали до комнатной температуры и разгерметизовывали. Катализатор отделяли от реакционной смеси с помощью центрифугирования, промывали толуолом, после чего повторно использовали в реакции.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты анализа образца TP(O)DB методом низкотемпературной адсорбции-десорбции азота показали, что синтезированный полимер обладает высокой удельной площадью поверхности 590.5 м²/г, (объем пор 0.9 см³/г, средний размер пор – 6 нм). На изотермах адсорбции-десорбции (рис. 1) наблюдается петля гистерезиса, что свидетельствует о мезопористой структуре образца,

при этом высокое поглощение азота при низких давлениях, постепенно возрастающее с ростом p/p_0 и резко увеличивающееся в области высоких давлений ($p/p_0 = 0.8-1.0$), указывает на присутствие как мезо-, так и микропор в структуре полимера.

Полученный полимер (TP(O)DB) был охарактеризован методом твердотельной спектроскопии ЯМР на ядрах ¹H, ¹³С и ³¹P. В спектре ЯМР ¹H (рис. 2а) присутствуют перекрывающиеся сигналы при 3.0 и 6.5 м.д., которые характеризуют атомы водорода ароматических и алифатических фрагментов полимера соответственно. В углеродном спектре (рис. 2в) фиксируется широкий сигнал при 131 м.д., соответствующий атомам углерода ароматических фрагментов, а сигналы при 10-60 м.д. характерны для алифатических атомов углерода, связанных с ароматической системой. В спектре ЯМР³¹Р (рис. 26) образца ТР(О)DВ интенсивный сигнал при 23 м.д. свидетельствует о практически полном окислении трифенилфосфиновых групп в процессе синтеза. После взаимодействия с фенилсиланом происходит частичное восстановление фосфиноксидных фрагментов, и в спектре образца ТРDВ появляется сигнал при -5 м.д. (рис. 2г). Обработка фенилсиланом приводит к загрязнению образца соединениями кремния, о чем свидетельствуют данные элементного анализа (2.48% Si) и значительное уменьшение площади поверхности (до 0.03 м²/г). Согласно данным ПЭМ, пористая структура полученного носителя не упорядочена (рис. 3а, б).

Нанесение родия проводили путем взаимодействия полимера TPDB с ацетилацетонатодикарбонилом родия в толуоле; количественное содержание родия в Rh/TPDB, определенное методом пламенной атомно-абсорбционной спектроскопии, составило 1.2%.

В энергетическом спектре образца Rh/TPDB (рис. 3г) сигналы 307.3 эВ (5/2) и 312.1 эВ (3/2) являются характеристическими для родия в нулевой степени окисления [24], что свидетельствует о присутствии в образце наночастиц Rh(0). Причина образования наночастиц, вероятно, заключается в том, что в ходе синтеза катализатора происходит восстановление родия фенилсиланом, который задерживается в порах носителя. В то же время сигналы 308.5 (5/2) и 313.2 эВ (3/2), 309.2 (5/2) и 314.0 эВ (3/2) характерны для комплексных соединений Rh(+1) [25]. На микрофотографиях катализатора Rh/TPDB (рис. 3а, б) идентифицируются сферические наночастицы родия, средний диаметр которых составляет 4 нм.

В ИК-спектре полимера ТР(О)DВ присутствуют полосы поглощения, характерные для связей С-Н (912, 870, 742, 721 и 692 см⁻¹) и –С=С– (1437–1612 см⁻¹) ароматического кольца, а также Р–С=С (1683 см⁻¹) и Рh₃Р=О (1186 см⁻¹) [26].

Рис. 2. Спектры ядерного магнитного резонанса: (а) – спектр ядерного магнитного резонанса на ядрах ¹H образца TP(O)DB; (б) – спектр ядерного магнитного резонанса на ядрах ³¹P образца TP(O)DB; (в) – спектр ядерного магнитного резонанса на ядрах ³¹P образца TP(O)DB; (в) – спектр ядерного магнитного резонанса на ядрах ³¹P образца TP(O)DB; (г) – спектр ядерного магнитного резонанса на ядрах ³¹P образца TPDB.

В спектре материала ТРDВ идентифицируются полосы поглощения, обусловленные валентными колебаниями Si-H (2158 см⁻¹) и Si-O-Si (1000-1100 и 814 см⁻¹) [26, 27], указывающими на загрязнение образца кремниевыми соединениями. После нанесения на полимер родия в спектре фиксируются полосы поглощения в областях 2061 и 1993 см⁻¹, соответствующие колебаниям связи Rh-CO, а также сигналы в диапазоне 1635-1652 см⁻¹, свидетельствующие о наличии аниона асас- в координационном окружении родия [28]. В полимерной матрице материала закреплены родиевые наночастицы различных размеров (от 2 до 6 нм) в зависимости от размера пор, в которых они находятся, также в структуре присутствуют родиевые комплексы, в которых Rh(+1) связан с трифенилфосфиновым лигандом, монооксидом углерода и ионом асас-.

Каталитическая активность полученного гетерогенного катализатора Rh/TPDB, была исследована в модельной реакции гидроформилирования октена-1. В первом каталитическом эксперименте катализатор демонстрировал достаточно высокую активность, которая заметно снижалась во втором цикле, что, по-видимому, связано с частичным вымыванием сорбированного в материале (но химически не связанного с фрагментами полимера) ацетилацетонатодикарбонила родия в раствор. Вследствие этого реакция протекала не только на активных центрах гетерогенного катализатора, но и на образующемся из Rh(acac)(CO)₂ в атмосфере синтез-газа гидридокарбониле родия HRh(CO)₄, что обуславливает более высокий выход альдегидов, чем в последующих циклах. Следует отметить, что гетерогенный катализатор Rh/TPDB может быть использован многократно, и его активность остается практически неизменной после второго цикла (табл. 1).

Для оценки влияния температуры на закономерности гидроформилирования в присутствии Rh/TPDB рассматривались данные, полученные при повторном использовании катализатора (рис. 4a). Установлено, что при 60°С конверсия в альдегиды не превышает 34% при степени превращения октена-1 на уровне 50%, отношение выходов альдегидов с нормальной и изомеризованной цепью (*н/изо*) при этом составляет 1.8. Однако при увеличении температуры до 80°С доля

Рис. 3. Микрофотографии (а, б), распределение частиц по размерам (в) и фотоэлектронный спектр (г) гетерогенного катализатора Rh/TPDB.

альдегидов возрастает до 57% с отношением h/uso 1.4 при 98%-ной конверсии октена-1. При 100°С происходит незначительное увеличение выхода альдегидов до 61%, однако отношение h/uso снижается до 0.6, что связано с повышением скорости гидроформилирования изооктенов. Самое

высокое отношение *н/изо* при схожих выходах было достигнуто при температуре 80°С, кроме то-го, в этих условиях образуется меньшее количе-ство побочных продуктов реакции.

При изучении скорости превращения субстрата и накопления продуктов реакции гидроформи-

Цикл	Конверсия, %	Выход изооктенов, %	Выход альдегидов, %	Отношение выходов альдегидов с нормальной и изомеризованной цепью, <i>н/изо</i>
1	99	25	74	0.8
2	99	42	57	1.4
3	72	44	28	2.5
4	77	48	29	2.6
5	73	45	28	2.6
6	64	39	25	2.6

Таблица 1. Гидроформилирование октена-1 в присутствии катализатора Rh/TPDB

Рис. 4. Гидроформилирование октена-1 в присутствии Rh/TPDB в зависимости от температуры, время реакции — 5 часов (а); кривая накопления продуктов реакции в зависимости от времени при 80° C (б). Условия реакции: Rh/cy6crpat = 1 : 543, 2.0 МПа (CO/H₂).

лирования октена-1 в присутствии Rh/TPDB (рис. 4б) было установлено, что превращение октена-1 в альдегиды начинается примерно через 80 мин после начала эксперимента, что, вероятно, может быть связано со стабилизацией диффузионных процессов в системе и формированием активной формы катализатора. Субстрат претерпевает практически полное (98%) превращение за 300 мин, при этом на начальном этапе реакции преимущественно происходит изомеризация субстрата. Так, содержание изооктенов в реакционной смеси достигает максимума спустя примерно 200 мин после начала эксперимента, а затем происходит уменьшение их доли вследствие протекания гидроформилирования с образованием изоальдегидов.

Таким образом, основываясь на данных о каталитической активности и физико-химических характеристиках катализатора Rh/TPDB, было выдвинуто предположение о его наиболее вероятном строении (рис. 5).

Наночастицы родия могут быть стабилизированы π -системой ароматических фрагментов полимера и гетероатомами, вследствие этого прочно закреплены в порах материала; для субстрата могут быть при этом доступны выступающие на поверхность материала "грани" наночастиц, которые достаточно эффективно катализируют побочную реакцию изомеризации октена-1. Данное предположение подтверждается и результатами каталитических экспериментов: катализатор, вопервых, не теряет своей каталитической активности в повторных опытах, что свидетельствует о прочной фиксации активных центров на носителе; во-вторых, конверсия субстрата, степень и относительная скорость его изомеризации, выход альдегидов и отношение h/uso не вполне соответствуют тем значениям, которые следовало ожидать в случае, если бы активными центрами были исключительно родий-фосфиновые комплексы. Значение этого параметра при повторных использованиях катализатора Rh/TPDB достигает значений 2.5–2.6, однако в конечной смеси продуктов реакции (5 ч, выход альдегидов ~30%), содержится значительное количество изомеризованных октенов, что позволяет предположить, что при полной конверсии непредельных соединений в альдегиды отношение h/uso составит около 0.8–1.0. В нашем случае изооктены по

Рис. 5. Предполагаемое строение гетерогенного катализатора Rh/TPDB.

большей части остаются в реакционной смеси, и низкая скорость их гидроформилирования может быть связана с наличием локальных стерических затруднений вблизи активных центров катализатора. Акты каталитических превращений, по большей части, происходят на выступающих на поверхности катализатора наночастицах. Число оборотов реакции (TOF) гидроформилирования октена-1 в расчете на полученные альдегиды при 80°С составляет около 100 ч⁻¹ (при 50% конверсии субстрата), что вполне соответствует литературным данным, характеризующим этот параметр для других гетерогенных катализаторов [18]. Довольно низкие значения TOF реакции в присутствии Rh/TPDB можно объяснить тем, что концентрация родия на поверхности ниже, чем общая концентрация в образце катализатора.

Таким образом, полученный катализатор проявляет достаточно высокую активность в гидроформилировании октена-1, а результаты исследования его строения дают основание полагать, что каталитическое действие обусловлено как закрепленными на поверхности полимера комплексами Rh(+1), так и наночастицами Rh(0), стабилизированными в порах.

КОНФЛИКТ ИНТЕРЕСОВ

Соавтор Э.А. Караханов является членом редколлегии журнала "Наногетерогенный катализ". Остальные соавторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Горбунов Дмитрий Николаевич, к. х. н., ORCID: https://orcid.org/0000-0002-1603-8957

Ненашева Мария Владимировна, ORCID: https://orcid.org/0000-0002-0770-8277

Мацукевич Роман Павлович, ORCID: https://orcid. org/0000-0003-4333-6172

Теренина Мария Владимировна, к. х. н., ORCID: https://orcid.org/0000-0002-4336-9786

Кардашева Юлия Сергеевна, к. х. н., ORCID: https://orcid.org/0000-0002-6580-1082

Караханов Эдуард Аветисович, д. х. н., проф., ORCID: https://orcid.org/0000-0003-4727-954X

ВКЛАД АВТОРОВ

Горбунов Д.Н., Кардашева Ю.С. и Караханов Э.А. разработали концепцию работы, адаптировали методику синтеза полимерного носителя под задачу исследования, предложили методику синтеза гетерогенного катализатора и набор методов для его физико-химического анализа. Ненашева М.В. и Мацукевич Р.П. синтезировали и выделили образцы полимерного материала и катализатора на его основе. Теренина М.В. и Горбунов Д.Н. провели анализ результатов, полученных методами ИК-спектроскопии, твердотельной ЯМР-спектроскопии, рентгенофотоэлектронной спектроскопии (РФЭС), атомно-абсорбционной спектроскопии, просвечивающей электронной микроскопии (ПЭМ), низкотемпературной адсорбции-десорбции азота. Ненашева М.В. и Мацукевич Р.П. провели каталитические эксперименты по гидроформилированию октена-1 в реакторах высокого давления, интерпретировали результаты хроматографического анализа смесей продуктов, подготовили таблицы с основными результатами. Текст статьи подготовлен Горбуновым Д.Н. и Кардашевой Ю.С., Ненашева М.В. и Горбунов Д.Н. подготовили графические материалы для публикации.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Frank R., Selent D., Börner A.* Applied hydroformylation // Chem. Rev. 2012. V. 112. № 11. P. 5675–5732. https://doi.org/10.1021/cr3001803
- 2. van Leeuwen P.W.N.M., Claver C. (eds). Rhodium catalyzed hydroformylation. Kluwer. Academic Publishers: Dordrecht, Netherlands. 2000. P. 203–226. https://doi.org/10.1002/aoc.170
- 3. Горбунов Д.Н., Волков А.В., Кардашева Ю.С., Максимов А.Л., Караханов Э.А. Гидроформилирование в нефтехимии и органическом синтезе: реализация процесса и решение проблемы рециркуляции гомогенных катализаторов // Нефтехимия. 2015. Т. 55. № 6. С. 443–460. [Gorbunov D.N., Volkov A.V., Kardasheva Y.S., Maksimov A.L., Karakhanov E.A. Hydroformylation in petroleum chemistry and organic synthesis: Implementation of the process and solving the problem of recycling homogeneous catalysts // Petrol. Chem. 2015. V. 55. P. 587–603. https://doi.org/10.1134/S0965544115080046] https://doi.org/10.7868/S0028242115060040
- Cole-Hamilton D.J. Homogeneous catalysis new approaches to catalyst separation, recovery, and recycling // Science. 2003. V. 299. № 5613. P. 1702–1706. https://doi.org/10.1126/science.1081881
- van Leeuwen P.W.N.M. Decomposition pathways of homogeneous catalysts // Appl. Catal. A: Gen. 2001. V. 212. № 1–2. P. 61–81. https://doi.org/10.1016/S0926-860X(00)00844-9
- Dreimann J. M., Kohls E., Warmeling H.F.W., Stein M., Guo L.F., Garland M., Dinh T.N., Vorholt A.J. In situ infrared spectroscopy as a tool for monitoring molecular catalyst for hydroformylation in continuous processes // ACS Catal. 2019. V. 9. № 5. P. 4308–4319. https://doi.org/10.1021/acscatal.8b05066
- Börner A., Franke R. Hydroformylation: fundamentals, processes, and applications in organic synthesis. John Wiley & Sons. 2016. P. 677–692 https://doi.org/10.1002/9783527677931
- Kohlpaintner C. W., Fischer R. W., Cornils B. Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process // Appl. Catal. A: Gen. 2001. V. 221. P. 219–225. https://doi.org/10.1016/S0926-860X(01)00791-8
- 9. Cornils B., Kuntz E.G. Introducing TPPTS and related ligands for industrial biphasic processes // J.

Organomet. Chem. 1995. V. 502. P. 177–186. https://doi.org/10.1016/0022-328X(95)05820-F

- 10. Matsinha L.C., Siangwata S., Smith G. S., Makhubela B.C.E. Aqueous biphasic hydroformylation of olefins: From classical phosphine-containing systems to emerging strategies based on water-soluble nonphosphine ligands // Catal. Rev. 2019. V. 61. № 1. P. 111–133. https://doi.org/10.1080/01614940.2018.1541781
- Zhao J., Yi J., Yang C., Wan K., Duan X., Tang S., Fu H., Zheng X., Yuan M., Li R., Chen H. A novel strategy of homogeneous catalysis and highly efficient recycling of aqueous catalyst for the hydroformylation of higher olefins based on a simple methanol/water mixed solvent // Catal. Lett. 2020. https://doi.org/10.1007/s10562-020-03385-8
- Obrecht L., Kamer P.C.J., Laan W. Alternative approaches for the aqueous-organic biphasic hydro-formylation of higher alkenes // Catal. Sci. Technol. 2013. V. 3. P. 541–551. https://doi.org/10.1039/C2CY20538F
- Warmeling H., Koske R., Vorholt A.J. Procedural rate enhancement of lean aqueous hydroformylation of 1-octene without additives // Chem. Eng. Technol. 2017. V. 40. № 1. P. 186–195. https://doi.org/10.1002/ceat.201600383
- Hanf S., Rupflin L.A., Gläser R., Schunk S.A. Current state of the art of the solid rh-based catalyzed hydroformylation of short-chain olefins // Catalysts. 2020. V. 10. № 5. ID 510. https://doi.org/10.3390/catal10050510
- Luo L., Li H., Peng Y., Feng C., Zeng J. Rh-Based nanocatalysts for heterogeneous reactions // ChemNanoMat. 2018. V. 4. № 5. P. 451–466. https://doi.org/10.1002/cnma.201800033
- 16. Chen F, Jiang X., Zhang L., Lang R., Qiao B. Singleatom catalysis: Bridging the homo- and heterogeneous catalysis // Chin. J. Catal. 2018. V. 39. № 5. P. 893–898. https://doi.org/10.1016/S1872-2067(18)63047-5
- Li C., Wang W., Yan L., Ding Y. A mini review on strategies for heterogenization of rhodium-based hydro-formylation catalysts // Front. Chem. Sci. Eng. 2018. V. 12. P. 113–123.

https://doi.org/10.1007/s11705-017-1672-9

 Gorbunov D., Safronova D., Kardasheva Yu., Maximov A., Rosenberg E., Karakhanov E. New Heterogeneous Rhcontaining catalysts immobilized on a hybrid organic– inorganic surface for hydroformylation of unsaturated // ACS Appl. Mater. Interfaces. 2018. V. 10. № 31. P. 26566–26575. https://doi.org/10.1021/accomi.8h02707

https://doi.org/10.1021/acsami.8b02797

 Zhao J., He Y., Wang F., Zheng W., Huo C., Liu X., Jiao H., Yang Y., Li Y., Wen X. Suppressing metal leaching in a supported Co/SiO₂ catalyst with effective protectants in the hydroformylation reaction // ACS Catal. 2020. V. 10. P. 914–920. https://doi.org/10.1021/acscatal.9b03228

- Жучков Д.П., Ненашева М.В., Теренина М.В., Кардашева Ю.С., Горбунов Д.Н., Караханов Э.А. Полимерные гетерогенные катализаторы в гидроформилировании непредельных соединений. // Нефтехимия. 2021. Т. 61. № 1. С. 5–20. [Zhuchkov D.P., Nenasheva M.V., Terenina M.V., Kardasheva Yu.S., Gorbunov D.N., Karakhanov E.A. Polymeric heteregeneous catalysts in the hydroformylation of unsaturated compounds // Petrol. Chem. 2021. V. 61. P. 1–14. https://doi.org/10.1134/S0965544121010011] https://doi.org/10.31857/S0028242121010019
- Chen L., Tian J., Song H., Gao Z., Wei H., Wangab W., Ren W. Enhancing the stability of the Rh/ZnO catalyst by the growth of ZIF-8 for the hydroformylation of higher olefins // RSC. Adv. 2020. V. 10. P. 34381– 34386.

https://doi.org/10.1039/D0RA06515C

- 22. Варшавский Ю.С., Черкасова Т.Г. Простой метод получения ацетилацетонатадикарбонил родия(I) // Журн. Неорг. Хим. 1967. № 12. С. 1709–1711.
- 23. Wu S., Teng C., Cai S., Jiang B., Wang Y., Meng H., Tao H. Triphenylphosphine-based functional porous polymer as an efficient heterogeneous catalyst for the synthesis of cyclic carbonates from CO₂ // Nanoscale Res. Lett. 2017. V. 12. № 1. ID 609. https://doi.org/10.1186/s11671-017-2376-2
- Hedman J., Klasson M., Nilsson R., Nordling C., Sorokina M.F., Kljushnikov O.I., Nemnonov S.A., Trapeznikov V.A., Zyryanov V.G. The electronic structure of some palladium alloys studied by ESCA and X-ray spectroscopy // Physica Scripta. 1971. V. 4. № 4–5. P. 195–201.

https://doi.org/10.1088/0031-8949/4/4-5/008

- 25. Standfest-Hauser C.M., Lummerstorfer T., Schmid R., Hoffmann H., Kirchner K., Puchberger M., Trzeciak A.M., Mieczyńska E., Tylus W., Ziółkowski J.J. Rhodium phosphine complexes immobilized on silica as active catalysts for 1-hexene hydroformylation and arene hydrogenation // J. Mol. Catal. A: Chem. 2004. V. 210. № 1–2. P. 179–187. https://doi.org/10.1016/j.molcata.2003.09.012
- 26. Bellamy L.J. X=Y bonds other than carbonyl vS=O, N=O, P=O, P=S, C=S and C=Se Vibrations. In: The infrared spectra of complex molecules. Springer. 1980. P. 195–220. https://doi.org/10.1007/978-94-011-6520-4 6
- Sitarz M., Handke M., Mozgawa W. Identification of silicooxygen rings in SiO₂ based on IR spectra // Spectrochim. Acta, Part A. 2000. V. 56. № 9. P. 1819– 1823.

https://doi.org/10.1016/S1386-1425(00)00241-9

28. *Peng Q., Yang Y., Yuan Y.* Immobilization of rhodium complexes ligated with triphenyphosphine analogs on amino-functionalized MCM-41 and MCM-48 for 1-hexene hydroformylation // J. Mol. Catal. A: Chem. 2004. V. 219. № 1. P. 175–181. https://doi.org/10.1016/j.molcata.2004.05.003